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1 INTRODUCTION 

The objective of this document is to introduce the hardware and software developed to monitor mat 
formation, with specific attention to strand orientation. The main objective is to ensure an appropriate 
orientation of wood strand in the mattress in order to achieve the desired panel properties. Three different 
visions systems have been studied:  

1. A system that captures images of the wood strands during free-fall, and performs 3-D surface 

reconstruction from multiple views. This system permits to evaluate wood particle’s shape and 

dimensions. The details of this system and the algorithms designed for it are discussed in 

Deliverable 6.3 – Report on the elaborated engines and software for blending technology. 

2. A system that acquires images of the wood strands that have been laid on the mattress, and 

performs 3-D surface reconstruction from multiple views. This system uses the setup developed for 

the analysis of free-falling strands. However, the results obtained in the application tests show that 

this approach is not suitable for the analysis of the distribution and orientation of the strands in the 

mattress. 

3. A system, named Belt2D, that consists of one camera placed perpendicularly to the conveyor belt 

where many the wood strands have been laid. The acquisition system is thus simple in structure, 

cost-effective and easy to deploy.  

This document analyzes the results obtained using the third system. The aim is to process each of the 2D 
layers of the mat without requiring an expensive and time consuming 3D reconstruction. We show that the 
software is able to precisely measure the orientation of the wooden strands from a single image acquired 
by the system. In particular, this document focuses on the advanced image processing algorithms used to 
extract the orientation of the strands. We begin by reviewing the acquisition process and sketching the 
overall approach to be employed. Then, in Section 2, we introduce the background of the orientation 
extraction method. The complete technique is discussed in Section 3. In Section 4, we describe the 
experimental study performed to validate our software and discuss its outcome. The conclusions on the 
study are provided in Section 5. 

 

1.1 LAYOUT OF THE VISION-BASED SYSTEM  

This section describes the layout of the vision system of the prototype proposed by UMIL to monitor the 
mat-forming process. Two different acquisition setups have been projected. The main differences in their 
deployment is the placement of the illumination elements. Hereafter, the first acquisition setup will be 
called Belt2D and the second one, acquisition setup B. Belt2D is preferred to acquisition setup B. Hence, if 
the condition in the production plant permit it, Belt2D should be the one installed.  

Figure 1 and Figure 2 show the layout of Belt2D from a side and top view, respectively. 
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Figure 1 - Layout of Belt2D (side view). The arrow represents the direction in which the mattress moves. 

 

 

Figure 2 - Layout of the Belt2D (top view). The arrow represents the direction in which the mattress moves. 

In case the deployment of Belt2D presents problems, acquisition setup B has been designed. The main 
difference with Belt2D is the orientation of the illumination elements, which are placed parallel to the 
movement of the conveyor belt. Figure 3 and Figure 4 show the structure of acquisition setup B from the 
side and top view, respectively.  
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Figure 3 – Layout of the acquisition system B (side view). The arrow represents the direction in which the mattress 
moves. 

 

 

Figure 4 – Layout of the acquisition system B (top view). The arrow represents the direction in which the mattress 
moves. 

1.2 ORIENTATION EXTRACTION FOR BELT2D IMAGES 

The acquisition setup is very simple. A Sony XCD-SX90CR CCD color camera is placed directly above the 
conveyor belt. Figure 5 shows an image acquired with this configuration. 
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Figure 5 A Sony XCD-SX90CR CCD color camera (top). An example of image acquired with the setup 
(bottom). 

The internal report on Strand Distribution Analysis (Fabio Scotti) contains a discussion on the general topic 
of detecting the orientation of wooden strands from image data. The document also introduces the topic of 
image segmentation. In brief, image segmentation is the process of partitioning an image into multiple 
regions, typically corresponding to certain objects or sharing some common characteristics, such as 
intensity, color or texture. Image segmentation is the main operation carried out in the orientation 
detection software. Indeed, the procedure followed by our method begins by performing a segmentation 
of the image into regions corresponding to individual strands. Then, the contours of these regions are used 
to compute the orientation of the strand. Alternative approaches that do not require segmentation, such as 
a simple analysis of the Fourier spectrum of the image (Nishimura and Ansell 2002), have been ruled out 
during the preliminary study because of their poor discriminating power. 

Image segmentation is often based on detecting the contours of the objects to be segmented. In these 
cases, the first operation to be performed is the detection of edges, i.e. sharp variation in the intensity of 
the image. Figure 6 shows the result of applying a popular edge detection technique to Figure 5, the Canny 
edge detector (Canny 1986). Even with manual adjustments of the parameters of the method, the results 
are rather poor. One can spot the contours of largest strands, as they appear as large empty regions, but 
small strands are extremely difficult to tell apart. Most contours are incomplete or joined with those of 
other strands. As a consequence, the resulting segmentation is of very low quality. 
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Figure 6 An example of the unfeasible results obtained using edge-based segmentation. Input 
image (top left), output of Canny's edge detection with default parameters (top right), output of 
Canny's edge detector after manual adjustment (bottom left), resulting segmentation (bottom 

right). 

Overall, edge information is not reliable enough to be the basis of the segmentation. Instead, we turned 
our attention towards color as crucial property that will guide the segmentation process. While the range 
of colors in the image is rather small, strands tend to have a uniform tone. The color allows an observer to 
easily separate a strand from those around it. Our goal is to design an automatic segmentation method 
capable of performing this task as accurately as a human operator while saving time. 

The key observation that originated our segmentation technique is the following. The pixels composing a 
strand have a similar position (they are not scattered across the image) and a similar color. The 
segmentation thus resemble the general problem of grouping some objects (in this case, the pixels of an 
image) according to their features (location and color) in such a way that objects in the same group are 
more similar to each other than to those in other groups. This task is known as clustering (Bishop 2006), 
and it is a major topic in data mining, machine learning, image analysis and information retrieval. Due to its 
relevance for the software, next section introduces clustering in general and its adaptation to color image 
segmentation. 
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2 BACKGROUND CONCEPTS 

2.1 CLUSTERING 

In the context of a clustering problem, an object is characterized by the values of a fixed set of F features. 
Therefore, objects can be thought as points in a F dimensional space. Figure 7 shows an example of data 
having just two features. 

 

Figure 7 An example of data having two numerical features. Each data element (called object or 
observation) corresponds to a point on the plane. 

A very intuitive way of clustering these data would be to create three circle-shaped groups, as shown in 
Figure 8. This is an example of centroid-based clustering (Lloyd 1982) : the groups are created so that data 
from the same cluster are close to each other, and data from different clusters are far from each other. 
There are though, many other criteria for clustering. Figure 9 show an example of clustering based on 
connectivity, i.e. the absence of large gaps between objects in the same group, regardless of location. 
Other clustering techniques use statistical analysis. In distribution-based clustering, one assumes the data is 
a mix of a specific set of statistical distributions, one for each cluster. This can be very powerful for the 
cases in which such assumption is justified. Finally, in density-based clustering (Kriegel et al. 2011), clusters 
are defined as areas of higher density than the remainder of the data set. Objects in these sparse areas, 
that are required to separate clusters, are usually considered to be noise and border points. No assumption 
on size or shape of the clusters is made. An example of this approach is shown in Figure 10. 
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Figure 8 The outcome of centroid-based clustering applied to the example data from Figure 7. 

 

Figure 9 Clustering data based on connectivity. The gap between the two groups is the focus of the 
algorithm. 
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Figure 10 In density-based clustering, a change in density is what tell two groups apart, regardless 
of shape, size or location. 

In general, there is no “correct” way to cluster a certain set of data (Estivill-Castro 2002), or even to 
determine how many groups there are. The purpose of the analysis and the contextual information about 
the data is what guides the choice of the clustering method. For illustrative purposes, we will introduce 
what is possibly the simplest and yet a common clustering approach: the k-means algorithm (Lloyd 1982). 

2.1.1 K-MEANS CLUSTERING 

The k-means clustering method is the reference centroid-based clustering algorithm. Given a set of objects 

(x1, x2, … , xn), k-means clustering aims to partition the n elements into k (≤ n) sets S = {S1, S2, … , Sk} so as 
to minimize the within-cluster mean distance. In other words, the algorithm splits the data in k distinct 
groups such that the distance between each element and the center of its group is as small as possible. The 

center (or mean position) of the i-th cluster Si is 

μ
i
=

1

|Si|
∑ x ∈ Six 

Within Si, the mean distance between the center and a point is 

Di =
1

|Si|
∑ x ∈ Si| |x − μ

i
|| 

The objective of k-means is to minimize the sum of these distances across the whole clustering, i.e. to make 
as small as possible the sum 

∑Di

k

i=1
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Starting from k random mean positions, the algorithm proceeds iteratively by alternating between two 
steps. In the assignment step, each object is assigned to the cluster having the nearest mean position. In 
the update step, the mean position of each cluster is set to the current centroid. The algorithm has 
converged when the assignments no longer change. 

Note that the number of clusters k is an input parameter of the algorithm. This is the main limitation of k-
means: an inappropriate choice of k may yield poor results. Another key limitation of k-means is that the 
clusters are expected to be elliptical (in feature space) and of similar size. In a number of situation, this is 
highly unsuitable. Next section will provide an illustrative example. 

2.2 CLUSTERING FOR IMAGE SEGMENTATION 

In image segmentation, clustering is mostly used for color-based segmentation (Forsyth and Ponce 2002). 
In a typical application, the objects to be clustered are the pixels of the image, and their features are the 
color components (for instance, expressed as a combination of red, green and blue values). An overview of 
the process is shown in Figure 11, while Figure 12 shows an example of this kind of segmentation. Note that 
the segmentation is purely based on color information, thus a segment can be disconnected. i.e. made up 
of two or more isolated areas. 

 

Figure 11 The process of segmenting an image by clustering the colors. Each pixel is represented as 
a point in the RGB color space. The resulting set of data points is then clustered. In the final 

segmentation, two pixels belong to the same segment if the corresponding colors belong to the 
same cluster. 

 

Figure 12 A segmentation based on color information only. The resulting segmentation has four 
segments made of many disconnected parts. 
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Figure 13 Color information only is not effective enough in segmenting strand images. 

Alternatively, one can use the position of a pixel, together with its color, as features for the clustering. This 
results in a segmentation in which areas that are far from each other are put into different segments even 
if they have the same color, such as in the example in Figure 14. 

 

Figure 5 Segmentation based on clustering color and position information. Area with 
approximately the same color (e.g. two red peppers) are told apart by their difference in position. 

This was the overall ideas we sketched in Section 1. However, the choice of the clustering algorithm is also 
key. For instance, k-means is not appropriate for the task, as it tends to create clusters having similar size in 
feature space, while the size of the strands can vary greatly even across the same image. In what follows, 
we introduce a density-based clustering algorithm that does not suffer from this limitation. 



D7.2 – Report on strand forming technologies - PU  
 

I-PAN  - GA n° 308630                                                                        Page 17 of 37 

2.2.1 THE MEAN-SHIFT SEGMENTATION ALGORITHM 

The mean-shift segmentation method (Comaniciu and Meer 2002, Arbelaez et al. (2011)) is the adaptation 
of a general-purpose clustering algorithm to color image segmentation. For simplicity, we begin by 
introducing the mean-shift clustering method and then continue with the detailed description of the actual 
segmentation method. 

2.2.1.1 Mean-shift clustering 

This method belongs to the family of density-based clustering algorithms. The overall idea is to determine 
the densest areas of the data (i.e. the modes) and to group together all the objects that lie in the 
"attraction basin" of the same mode. This basing is determined through an iterative process called the 
mean-shift procedure (Fukunaga and Hostetler 1975). 

The algorithm applies the mean-shift procedure to every object in the dataset and track which mode is 
found at the end of the procedure. In the final clustering, each cluster corresponds to a single mode and 
vice versa. A cluster C is formed exactly by the objects from which the mean-shift procedure ended in the 

mode mC corresponding to C. Figure 15 shows a simple example of how the clusters are created. 

 

Figure 6 A dataset having two modes. The black arrows sketch some of trajectories of the mean-
shift procedure, starting from a data element at the tail and ending in one of the two modes. The 

resulting attraction basins have been outlines in gray and blue. 

Starting from an initial data point p as current position, the mean-shift procedure operates as follows. 

1. Consider the spherical region of radius h around the current position 

2. Compute the center of mass m of the region 

3. If m is equal to the current position 

– Flag m as a mode 

– Assign p to the cluster Cm corresponding to m 

– End the procedure 

4. Consider m as new current position and go to step 1 

A graphical depiction of the first two steps is provided in Figure 16. 

Note that the algorithm depends on just one parameter. The meaning of the parameter h is analogous to 
the bandwidth parameter in kernel density estimation, a statistical method to compute the underlying 
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density (or equivalently, probability) distribution of a dataset. The larger the bandwidth, the smoother is 
the resulting density function. 

 

Figure 7 One iteration of the mean-shift procedure. 

Despite the relatively simple calculation involved, mean-shift clustering can exhibit a very complex 
behavior; see Figure 17 for an example. 
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Figure 8 Mean-shift clustering applied to a complex dataset (top). The density estimation of the 
input data (bottom). The modes are marked with a circle. Note the variability in shape and size of 

the clusters. 

2.2.2 MEAN-SHIFT CLUSTERING FOR IMAGE SEGMENTATION 

As expected, the mean-shift segmentation method operates by applying the mean-shift clustering 
algorithm over a dataset containing position and color information of every pixel. There is, though, a key 
difference: instead of a single radius h there are two radiuses, one for color and one for position. This 
provides the ability to weight differently the magnitude of the change in color and position across a cluster, 
allowing the user to decide the relative importance of the two features over the segmentation. 
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3 ORIENTATION EXTRACTION 

In this section, we introduced the proposed software method for measuring the orientation of wooden 
strands in Belt2D images. Figure 18 shows the overall structure of the method. At the outermost level there 
are two operations: 

1. The contour of each wooden strand is detected by segmenting the corresponding area of the 
image. 

2. The orientation of the wooden strands is computed from their contours. 

 

Figure 9 The overall structure of the orientation detection method. 

3.1.1.1 Segmentation of the wooden strands 

The segmentation process begins by applying mean-shift clustering to the pixels of the image based on 
position and color. The color of a pixel is specified by the three red, green and blue components, while the 
position is simply the row and column number in which the pixel appears. Figure 19, top right, show the 
raw output of this step applied to an example strand image. The colors are assigned randomly so that the 
individual strands are easy to spot. Note that the algorithm usually detects a very large number of 
extremely small regions, corresponding to strands that are almost completely covered by others. These 
regions are then removed based on their size, and the corresponding pixels are set to background and 
ignored. A small region which is completely contained into another is considered a hole of the latter, rather 
than one strand being on top of the other. Thus, these holes are filled with the surrounding label in the last 
phase of the algorithm (Figure 19, bottom row). 
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Figure 19 The image processing performed by the orientation detection software. The input images 
(top) undergoes mean-shift segmentation (second image). Then, the smallest regions are filtered 

(third image) and internal holes in other regions are filled (bottom). 
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3.1.1.2 Computing the orientation from the contour 

Due to the production process at the plant, a strand is of approximately rectangular shape and its 
orientation is that of its major axis. A straightforward approach would be to compute a bounding rectangle 
around the contour of the strand and use the major axis. However, this is not very robust to irregular 
shapes or mistakes in the detection of the contour. Instead, we use least square fitting (Hastie, Tibshirani, 
and Friedman 2001), a procedure analogous to computing a regression line over a set of points. 

The orientation of a strand is computed as follows. We consider the set of points P falling inside the strand 
contour C. Then, we compute the line the least square regression line r of P. The line r is such that distance 
with respect to the points in P is a small as possible. Recall that a line can be written in the form y = αx + β 
and let P = {(x1, y1), … , (xn, yn)}. The distance between a point (x, y) and the corresponding point on the 
line is |y − (αx + β)|. The least square regression line is such that 

∑ p ∈ P( y
p
− (αxp + β))2 

is as small as possible. Figure 20 provide an example. Finally, the orientation angle is computed from the 
coefficients of the line. 

 

Figure 20 The computation of the orientation angle from a strand contour (in black) using least 
square regression line (in red). 



D7.2 – Report on strand forming technologies - PU  
 

I-PAN  - GA n° 308630                                                                        Page 23 of 37 

4 EXPERIMENTAL STUDIES 

After its design and development, the software has been tested in two experimental studies. The first is a 
preliminary study, involving test images acquired with a low quality camera. The experiment allows to 
check the effect of image quality over the accuracy of the software and possibly to confirm the 
specifications on the image acquisition system. In the second study, instead, the images have been 
acquired using proper equipment and lighting conditions. The wooden strands have been arranged 
according to a predetermined orientation distribution. This allows to perform a quantitative evaluation of 
the results of our orientation detection technique, thus validating the performance of the software. Both 
datasets were created at UNIMI simulating the camera setup and lighting of the factory. Each experiment is 
reported in a separate section. 

4.1 PRELIMINARY EXPERIMENT 

4.1.1 TEST SETUP 

The images used for this study have been acquired using a cheap webcam. The dataset is composed of 26 
images having size 640x480 pixels. A closer look at the images reveals a noticeable amount of color 
artifacts. An example is shown in Figure 17. 

 

Figure 10 An image used in the preliminary experiment (left). A close up showing chromatic noise 
(right). 

The parameters of the algorithm are three: the color and spatial radius for the mean-shift segmentation 
and the minimum strand area for filtering. Given the nature of this experiment, we tested the software 
extensively, using many parameters values, to make sure that potential inaccurate results are not due to an 
incorrect configuration of the algorithm. 

 

 

4.1.2 RESULTS 

Figures 18, 19 and 20 show a three of the segmentation obtained by the algorithm using the best 
configuration of parameters. 
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Figure 11 Preliminary experiment: a conveyor belt image acquired through a low quality camera 
(top) and the corresponding strand segmentation as performed by our software (bottom). 
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Figure 12 Preliminary experiment: a conveyor belt image acquired through a low quality camera 
(top) and the corresponding strand segmentation as performed by our software (bottom). 
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Figure 13 Preliminary experiment: a conveyor belt image acquired through a low quality camera 
(top) and the corresponding strand segmentation as performed by our software (bottom). 

The accuracy of the segmentation is quite poor. While most large strands have been segmented correctly, 
most small strands have not been detected. Also, in a number of cases two or more strands have been 
joined together. As a consequence, the computed orientation angle will be incorrect. 

The results of the preliminary experiment show that the combination of image acquisition system and 
software is not able to measure accurately the orientation of the strands. Through the second experimental 
study, we will show that this outcome is due to the low image quality delivered by the camera rather than 
because of a problem in the software component. 

4.2 VALIDATION EXPERIMENT 

4.2.1 TEST SETUP 

The images used in this experiment are meant to reproduce as accurately as possible the images from the 
panel production environment. Thus, they have been acquired according to the specification of the image 
acquisition system, using the Sony XCD-SX90CR CCD color camera and the camera setup called Belt2D. The 
dataset is composed of seven images. In each image, the strands exhibit a specific distribution of 
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orientation angles that allows to evaluate the results of the software not only by looking at the 
segmentation, but also at the estimated orientation distribution. Figure 21 shows one of the images in the 
dataset. The parameter values used in the experiment have been determined with a few tests, simply by 
trial and error. 

 

Figure 14 An image from validation dataset, having a predetermined orientation distribution. The 
strands in the right part of the image are oriented according to a 90° angle, while in the left part 

the orientation is 135°. 

4.2.2 RESULTS 

Figures 22 - 28 show the seven test images, together with the corresponding strand segmentations and the 
histograms of the orientation. In blue there is the histogram computed by the software, while in red is the 
expected distribution. 
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Figure 15 Validation experiment. Input image (top), strand segmentation (center), histogram of the 
strand orientation (bottom). In blue, the histogram as computed by the software; in red, the 

expected result. 
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Figure 16 Validation experiment. Input image (top), strand segmentation (center), histogram of the 
strand orientation (bottom). In blue, the histogram as computed by the software; in red, the 

expected result. 
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Figure 17 Validation experiment. Input image (top), strand segmentation (center), histogram of the 
strand orientation (bottom). In blue, the histogram as computed by the software; in red, the 

expected result. 
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Figure 18 Validation experiment. Input image (top), strand segmentation (center), histogram of the 
strand orientation (bottom). In blue, the histogram as computed by the software; in red, the 

expected result. 
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Figure 19 Validation experiment. Input image (top), strand segmentation (center), histogram of the 
strand orientation (bottom). In blue, the histogram as computed by the software; in red, the 

expected result. 
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Figure 20 Validation experiment. Input image (top), strand segmentation (center), histogram of the 
strand orientation (bottom). In blue, the histogram as computed by the software; in red, the 

expected result. 
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Figure 21 Validation experiment. Input image (top), strand segmentation (center), histogram of the 
strand orientation (bottom). In blue, the histogram as computed by the software; in red, the 

expected result. 
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Overall, the segmentation is visually accurate. There are sporadic mistakes: rarely different strands are 
being joined together or a strand is split in multiple parts, usually along the minor axis. This does not affect 
the final result, and indeed the comparison between computed and expected histograms show the effect 
on those mistakes is hardly apparent. The orientation detected by the software is remarkably consistent 
with the expectation. 

The running time of the algorithm is also an important factor, as the software is intended for online 
monitoring. The experiment have been run on a regular computer (Intel Core i7-3770 processor). The 
processing took between 8 and 9 seconds to complete. The running time is almost entirely due to the 
clustering step. Indeed, mean-shift clustering is notoriously time consuming, due to the fact that the mean-
shift procedure is run on every pixel of the image. Still, the current software already meets the 
requirements of the production system. Moreover, mean-shift is easily parallelizable and can be run on 
graphical processing units (GPUs). There are multiple such implementations available in well-known 
libraries such as OpenCV (Bradski 2000). In particular, GPU-implementations of mean-shift segmentation 
claim 50-100x speedups with respect to CPU (Li and Xiao 2009), bringing the running time well below half a 
second. 
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5 CONCLUSIONS 

In this deliverable we have presented the image processing technique used to measure the orientation of 
wooden strands from single, one camera images. This is the simplest acquisition setup under consideration, 
which is an advantage in terms of costs and easiness of deployment. Our method works by locating each 
strand inside the image and computing the orientation from its contour. The first task required solving a 
difficult image segmentation problem, which we did by formulating the problem as a clustering one and 
designing the appropriate technique to solve it. 

The software has been tested on laboratory images provided by UNIMI, simulating the imaging condition at 
the factory. The test images were designed so that the orientation distribution was known in advance and 
thus we had a baseline to compare against the result of the software. The experimental validation study 
shows the method is accurate in the segmentation and the estimated orientation distribution is very 
consistent with the expectation. 

The goal of implementing a vision system and implementing a software method for measuring the 
orientation of the wooden strands on the conveyor belt can be considered completed. A possible 
improvement of the software would be to improve the processing time. Nevertheless, this is not critical 
requirement and it can be accomplished with just a minor effort. 
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